

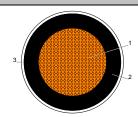
TECHNICAL DATA SHEET LOW VOLTAGE THHN BUILDING WIRE

Cable Description:

8 AWG CU/PVC (THHN)

Design and Construction Data:			
Reference Manufacturing Standards		American Designation	
Max. Permissible Continuous Conductor Temp	°C	105	
Max. Conductor Short Circuit Temp for 5 Seconds	°C	150	
Rated Voltage	V	600	
Conductor Size	AWG	8	
Number of wires per conductor		19	
Wires Combination		Round Wires Unilay-Stranded	
Insulation Material		Polyvinyl Chloride (PVC)	
Nominal Insulation Thickness	mm	0.76	
Insulation Color		BLACK	
Outer Nylon Jacket		Polyamide Nylon	
Approximate Wire Overall Diameter	mm	5.4	
Electrical Data:			
Max Conductor DC resistance @ 20 °C	ohms/km	2.1400	
Max Conductor AC resistance @ 105 °C	ohms/km	2.8550	
Max Conductor Short Circuit Current @ 1 Second	kA	0.6657	
Current Carry Capacity @ 30 °C Ambient Temperature(1)			
Single-Insulated Conductor			
Laid in free air	Α	80	
Not more than Three Current-Carrying Conductors ⁽²⁾			
Laid in Race way, Cable, or Earth (Directly Burried)	Α	55	

- (i) Ampacity based on NEC Table 310.15(B)(16) (Formerly Table 310.16) & Table 310.15(B)(17) (Formerly Table 310.17)
 - Refer to 310.15(B)(2)(a) for the ampacity correction factors where the ambient temperature is other than 30°C.
 - Refer to 110.14(C) for temperature rating limitations.
 - See Section 240.4 (D) for conductor overcurrent protection limitations.
- (ii) Refer to 310.15(B)(3)(a) for more than three current-carrying conductors


The wire is generally according to: THHN designation

Packing Data:				
Туре		Spool		
Length of Cable per Spool (± 2%)	m	152		
Net Weight (Approximate)	kg	14.2		

Cable Marking:

BAHRA CABLES CO. KSA THHN / THWN 8 AWG (10 mm2) 600 Volts VW-1 GASOLINE & OIL RESISTANT 105 ° C SASO / IEC 60227-3

Cable Drawing

Description	8 AWG CU/PVC (THHN)	Approx. Diameter
1	Copper conductor with round shape	3.58
2	PVC Insulation	5.1
3	Polyamide Nylon Jacketing	5.36

Inquiry No.: EP-1000241 (126491) ksalahuddin 13/08/2023

Product ID: 11131050 (\$\frac{\cuperts}{\cuperts}\$\left(\text{Technology}\right)\frac{\cuperts}{\cuperts}\$\right(\text{Technology}\right)\frac{\cuperts}{\cuperts}\right)

